Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression
نویسندگان
چکیده
منابع مشابه
Smoothed Quantile Regression for Statistical Downscaling of Extreme Events in Climate Modeling
Statistical downscaling is commonly used in climate modeling to obtain high-resolution spatial projections of future climate scenarios from the coarse-resolution outputs projected by global climate models. Unfortunately, most of the statistical downscaling approaches using standard regression methods tend to emphasize projecting the conditional mean of the data while paying scant attention to t...
متن کاملHigh quantile regression for extreme events
For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...
متن کاملStatistical downscaling of precipitation
Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, ...
متن کاملCensored Quantile Regression Redux
This vignette is a slightly modified version of Koenker (2008a). It was written in plain latex not Sweave, but all data and code for the examples described in the text are available from either the JSS website or from my webpages. Quantile regression for censored survival (duration) data offers a more flexible alternative to the Cox proportional hazard model for some applications. We describe t...
متن کاملLocally Weighted Censored Quantile Regression
Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quantile levels. Moreover, some of the work use recursive algorithms making it challenging to derive a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2007
ISSN: 1520-0493,0027-0644
DOI: 10.1175/mwr3403.1